Imaging tripartite synapses using super-resolution microscopy

Janosch Peter Heller, Tuamoru Odiiac, Kaiyu Zhenga, Dmitri A.Rusakova

https://doi.org/10.1016/j.ymeth.2019.05.024

Astroglia are vital facilitators of brain development, homeostasis, and metabolic support. In addition, they are also essential to the formation and regulation of synaptic circuits. Due to the extraordinary complex, nanoscopic morphology of astrocytes, the underlying cellular mechanisms have been poorly understood. In particular, fine astrocytic processes that can be found in the vicinity of synapses have been difficult to study using traditional imaging techniques.

Here, we describe a 3D three-colour super-resolution microscopy approach to unravel the nanostructure of tripartite synapses. The method is based on the SMLM technique direct stochastic optical reconstruction microscopy (dSTORM) which uses conventional fluorophore-labelled antibodies. This approach enables reconstructing the nanoscale localisation of individual astrocytic glutamate transporter (GLT-1) molecules surrounding presynaptic (bassoon) and postsynaptic (Homer1) protein localisations in fixed mouse brain sections. However, the technique is readily adaptable to other types of targets and tissues.

Skills

Posted on

04/10/2020

Skip to content